Silver(I)-promoted Oxidation and Ring-enlargement Reactions of Unstrained Hydrocarbons, Polyphenyl-cyclopentadiene

Xin Cheng LI^{1,2}, Gui Ling NING¹*, Liang Ping WU², Ji Hong SHAN¹, Yuan LIN¹

¹School of Chemical Engineering, Dalian University of Technology, Dalian 116012 ²Chemistry Department, East China Normal University, Shanghai 200062

Abstract: A unique sliver(I)-promoted oxidation reaction of polyphenyl-cyclopentadiene is described, in which an oxygen is inserted into the cyclopentadiene-ring, forming a six-membered pyrylium cation.

Keywords: Oxidation, pyrylium, bond activity, polyphenyl-cyclopentadiene.

The activation of carbon-carbon bonds by soluble transitional metal complexes has been one of the most prominent challenges in recent years¹⁻³. Despite the inertness of carbon-carbon bonds, some possible ways to cleave carbon-carbon bonds have been devised, such as relieving ring energy⁴, inducing aromatic stabilization⁵, forming stable metallocyclic complexes⁶, *etc*.

Silver salts, such as silver perchlorate and silver trifluoroacetate, play an important role in carbon-carbon bond activation, especially in strained hydrocarbons⁷. It has been found by Koser and his coworkers⁸ that strained hydrocarbons can be oxidized by Ag(I) salts, with the formation of silver metal and protic acid. However, the reactions for unstrained substrates, to the best of our knowledge, have not yet been reported. We present herein an unprecedented example of oxidation and ring-enlargement reaction of unstrained five-membered cyclopentadiene-ring promoted by silver(I) ions, shown in **Scheme 1**.

It was found in the synthesis of coordination compounds between silver perchlorate and aromatic hydrocarbons that oxidation and oxygen-inserted reactions occur when polyphenylcyclopentadiene, such as 1,2,3,4,5-pentaphenyl-cyclopentadiene (PPCP) and 1,2,3,4-tetraphenyl-cyclopentadiene (TPCP), was treated with AgClO₄•H₂O in mixed solvent(CH₂Cl₂/toluene)⁹, forming a pyrylium salt other than the expected simple silver-coordinated complex¹⁰⁻¹². In order to investigate the source of the oxidant, 1,2,4-triphenyl-cyclopentadiene (TPD), owing to its availability, was selected. The reaction was carried out at room temperature. To a solution of TPD (0.1mmol) in a mixed solvent (benzene/ CH₂Cl₂) was added AgClO₄•H₂O (0.1mmol). After 8 days' stirring, a precipitate of gray-white powder and a dark-green solution was obtained.

_

^{*}E-Mail: ninggl@dlut.edu.cn

The precipitate was proved to be silver metal by powder XRD¹³. Green crystals were crystallized out of the dark-green solution by solvent diffraction method¹⁰⁻¹¹. MS¹³(m/z 309; M⁺ 100%) and ¹HNMR¹³(CDCl₃, 400MHZ, δ in ppm, 8.45 s, 9.17 s)¹⁴ data of the crystals proved the structure of the pyrylium in Scheme 1. It was also found that the pH value of the reaction solution decreased during the reaction, indicating the generation of protic acid. The pyrylium structure was further supported by single crystal X-ray analysis¹³. Thus we postulate that Ag(I) is the oxidant of the reaction.

Scheme 1

Ph

Ph

Ph

$$+ 4 \text{AgClO}_4$$
 $+ 4 \text{AgClO}_4$
 $+ 4 \text{AgClO}_4$
 $+ 6 \text{ClO}_4$

TPD

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 20072003).

References and Notes

- K. C. Bishop III, Chem. Rev., 1976, 76, 461.
- P. W. Jennings, L. L. Johnson, chem. Rev., 1994, 94, 2241.
- 3. R. H. Crabtree, Chem. Rev., 1985, 85, 245.
- M. Murakami, et al., J. Am. Chem. Soc., 1996, 118, 8285. 4.
- F. W. C. Benfield, et al., J. Chem. Soc., Dalton Trans., 1974, 1325. 5.
- 6. J. William Suggs, et al., J. Am. Chem. Soc., 1984, 106, 3054.
- A. Padwa, et al., J. Am. Chem. Soc., 1981, 103, 2404.
- G. F. Koser, et al., J. Org. Chem., 1976, 41, 583, and references therein.
 Gui Ling Ning, et al., The 5th Symposium on Inorganic Chemistry of China, 2000, 618.
 Gui Ling Ning, et al., Inorg. Chem., 1999, 38, 1376.
- 10.
- Gui Ling Ning, et al., Inorg. Chem., 1999, 38, 5668. 11.
- The related contents and data of characterization are to be published. 12.
- 13. The powder XRD,NMR, MS and single crystal X-ray analysis data have been deposited in editorial office of CCL.
- 14. A. T. Balaban, et al., J. Chem. Soc., 1964,194 6.

Received 30 December, 2001